Addressing Modes of 8086

Why study addressing modes?

Addressing modes help us to understand the types of operands and the way they are accessed while executing an instruction.

Types of addressing mode in 8086

- 1. Immediate addressing mode
- 2. Direct addressing mode
- 3. Register addressing mode
- 4. Register Indirect addressing mode
- 5. Indexed addressing mode
- 6. Register relative addressing mode
- 7. Base plus index addressing mode

1: Immediate addressing mode

In this type of mode, immediate data is part of instruction and appears in the form of successive byte or bytes

MOV AX,10ABH

2: Direct addressing mode

In this type of addressing mode a 16-bit memory address is directly specified in the instruction as a part of it.

MOV AX,[5000H]

22 5000 33 5001 5002 5002

3: Register addressing mode

Here, the data is stored in the register and it can be a 8-bit or 16-bit register.

▶ All the registers, except IP, may be used in this mode.

4: Register Indirect addressing mode

The address of the memory location which contains data or operand is determined in a indirect way, using the offset register.

5: Indexed addressing mode

MOV AX, [SI]

In this addressing mode, offset of the operand is stored in one of the index registers.

► DS is the default segment for index register SI and DI.

 AX
 22

 33

 50
 00

 SI

Memory

5000

5001

5002

6: Register relative addressing mode

In this mode, the data is available at an effective address formed by adding an 8-bit or 16-bit displacement with the content of any one of the registers BX, BP, SI and DI in the default (either DS or ES) segment.

7: Base plus index addressing mode

In this mode the effective address is formed by adding content of a base register (any one of BX or BP) to the content of an index register (SI or DI).

Default segment register DS.

10

00

BX

+

MOV AX, [BX] [SI]

00

20

SI

= 3000 H

Final

Index

Address

8: Base relative plus index addressing mode

In the effective address is formed by adding an 8 or 16-bit displacement with sum of contents of any one of the base registers (BX or BP) and any one of the index registers, in a default segment.

Addressing Modes

 Register - transfers a byte or word from the source register or memory location to the destination register or memory location
 MOV BX, CX

Immediate - transfers an immediate byte or word of data into the destination register or memory location

MOV AX, 3456h

Direct - moves a byte or word between a memory location and a register

MOVAL, [1234h] (1234h is treated as a displacement within data segment)

Addressing Modes(cont.)

- Register Indirect (base relative or indexed) transfers a byte or word of data between a register and the memory location addressed by an index (DI or SI) or base register (BP or BX) MOV AX, [BX]
- Base Plus Index (base relative indexed) transfers a byte or word of data between a register and the memory location addressed by a base register (BP or BX) plus index (DI or SI) register

MOV DX, [BX + DI]

Addressing Modes(cont.)

Register Relative - transfers a byte or word of data between a register and the memory location addressed by an index (DI or SI) or base register (BP or BX) plus displacement MOV AX, [BX + 1000h]

Base Relative Plus Index (base relative indexed) - transfers a byte or word of data between a register and the memory location addressed by a base register (BP or BX) plus an index register (DI or SI)

MOVAX, [BX + SI + 100h]