Instruction Set of 8086

- An instruction is a binary pattern designed inside a microprocessor to perform a specific function.
- The entire group of instructions that a microprocessor supports is called **Instruction Set**.
- 8086 has more than **20,000** instructions.

Classification of Instruction Set

- Data Transfer Instructions
- Arithmetic Instructions
- Logical Instructions
- Control Transfer Instructions
- String Manipulation Instructions
- Processor Control Instructions

Instruction Format

- The size of 8086 instruction is one to six bytes depending upon the addressing modes used for instructions.
- The general Instruction format that most of the instructions of the 8086 microprocessor follow is:

OpCode (6 bits)	D (1 bit)	₩ (1 bit })	MOD (2 bits)	REG (3 bits)	R/M (3 bits)	Lower order bits of displacement	Higher order bits of displacement

Format Contd...

- The Opcode stands for Operation Code.
- Every Instruction has a unique 6-bit opcode.
- For example, the opcode for **MOV** is 100010.
 - D stands for direction
 If D=o, then the direction is from the register
 If D=1, then the direction is to the register
 - W stands for word
 If W=o, then only a byte is being transferred, i.e. 8 bits
 If W=1, them a whole word is being transferred, i.e. 16 bits

• The 2 bit **mod** field defines the method of addressing the operand specified by the r/m field.

Code for mod field	Name of the mode
01	Memory mode with no displacement Memory mode with 8-bit signed displacement Memory mode with 16-bit signed displacement Register mode

The 3 bit **reg** field is used to indicate the source or destination of the operand along with the **d** field

Name of the register represented by the code when w=0 or 1				
W=o	W=1			
AL	AX			
CL	CX			
DL	DX			
BL	BX			
AH	SP			
CH	BP			
DH	SI			
AH	DI			
	AL CL DL BL AH CH DH			

Code for	Effective address calculation when mod oo/01/10									
r/m field	Mod=oo	Mod=01	Mod=10							
000	[BX] + [SI]	[BX] + [SI] + d8	[BX] + [SI] + d16							
001	[BX] + [DI]	[BX] + [DI] + d8	[BX] + [DI] + d16							
010	[BP] + [SI]	[BP] + [SI] + d8	[BP] + [SI] + d16							
100	[SI]	[SI] + d8	[SI] + d16							
101	[DI]	[DI] + d8	[DI] + d16							
110	d16 (direct)	[BP] + d8	[BP] + d16							
111	[BX]	[BX] + d8	[BX] + d16							

- The low order displacement and high order displacement are optional and the instruction format contains them only if there exists any displacement in the instruction.
- If the displacement is of 8 bits, then only the cell of low order displacement is filled and if the displacement is of 16 bits, then both the cells of low order and high order are filled, with the exact bits that the displacement number represents.

Types of Instruction formats

1. One byte instruction: Implied or register mode

MOV CL, DH

2. Two-byte instruction: Register to/from memory/register with no displacement MOV AX, 35H

3. Three-byte instructions: register to/from memory with 8-bit displacement LDA 2050H 4. Four-byte instructions: register to/from memory with 16-bit displacement MOV AX, [BX+1324H] 5. Five-byte instructions: immediate 8-bit data to memory with 16-bit displacement MOV [BX+08H], 12H 6. Six-byte instructions: immediate 16-bit data to memory with 16-bit displacement MOV [BX+08H], 1234H