
Variables and Constants

The various characters used to construct
assembler variables, constants and directives
are the following

Uppercase English Alphabets : A to Z

Lower case English Alphabets : a- z

Numbers : 0 – 9

Special Characters : @, $, ?, _

15

Variables

Variables are symbols used in ALP statements
in order to represent the variables data and
address

The advantage of using variables is that the
value of the variable can be dynamically
varied while running the program

16

Rules

The variable name can be any of the
character set

First character should be an alphabet or
underscore

The length of a variable name depends
on assembler, normally 32 characters

Are case sensitive

17

Constants
The decimal, binary or hexadecimal numbers used to

represent the data or address in an ALP statement
are called constants or numerical constants

Their values are fixed and cannot be changed while
running a program

The binary (ends with B), hexadecimal (Ends with H)
and decimal constants (ends with D) can be
differentiated by placing a specific alphabet at the
end of the constant

A zero should be placed at the beginning of
hexadecimal number, else it will be treated as a
variable

Ex. 1101B, 1060D, 92ACH

18

Assembly Directives

These are instructions to the assembler regarding
the program being assembled

They are also called pseudo-instructions

They are used to

specify start and end of a program,

attach value to variables,

allocate storage locations to input/output data,

define start and end of segments, procedures and
macros etc.

19

They control the generation of machine code and
organization of the program

But no machine codes are generated for assembly
directives

DB (Define Byte)

Used to define a byte type variable

It reserves specific memory to variables and stores
the values specified in the statement as initial
values in the allotted memory locations

The range of values that can be stored in a byte
type variable is 0-255 for unsigned value and -128
to 127 for signed value

Ex:- AREA DB 45 -> variable AREA is initialised with 45

20

DW (Define Word)

Used to define a word type variable

It reserves two consecutive memory locations
to each variable and store the 16-bit value
specified in the statement as initial value in the
allotted memory locations.

Range of values 0-65535 for unsigned value
and -32768 – 32767 for singed value

Ex:- BCODE DW ‘8E’ -> two consecutive
locations are reserved for variable BCODE and
initialized with ASCII value 8 and E

21

SEGMENT AND ENDS (END of SEGMENT)

The directive SEGMENT is used to indicate the
beginning of a code/data/stack segment.

The directive ENDS is used to indicate the end

General form

Segnam SEGMENT

.

.

Segnam ENDS

Where ‘segnam’ is the user defined name of the
segment

22

ASSUME

ASSUME informs the assembler, the name of the
program/data segment, that should be used for
a specified segment.

The general form of a statement using ASSUME
directive is given below

ASSUME segreg : segnam, … segreg : segnam

Where segreg is the segment register

ASSUME CS: _CODE

Informs the assembler that the instruction of the
program are stored in the user-defined logical
segment _CODE

23

ORG, END, EVEN and EQU

ORG is used to assign the starting address
(effective address) for a program/data segment

The END directive is used to terminate a program
The statement after the END directive will be ignored by

the assembler

The directive EVEN will inform the assembler to
store the program/data segment starting from an
even address
The 8086 requires one bus cycle to access a word at

even address and two bus cycles to access a word at
odd address.

So it helps in accessing a series of consecutive memory
words quickly

EQU is used to attach a value to a variable

24

PROC, FAR, NEAR and ENDP

These directives are used to define a
procedure/subroutine

The directive PROC indicates the beginning of a
procedure and ENDP indicates the end of a
procedure

The FAR or NEAR are type specifier which is used
to differentiate intra-segment call (call within a
segment/near call) and inter-segment call (call
from another segment/far call)

25

The general form of writing a procedure is

procname PROC [NEAR/FAR]

.

RET

procname ENDP

 SHORT

 Used to reserve one memory location for 8-bit
singed displacement in jump instructions

 Ex. JMP SHORT AHEAD

 Will reserve one memory location for an 8-bit
displacement named AHEAD

26

